Skynet: A Cloud-Based Data Transfer Architecture

Aleksandar Kuzmanovic

http://networks.cs.northwestern.edu
The Rise of “Hyper Giants”

Consolidation of Content

- Top 150 content providers account for 50% of traffic
- Top 30 content providers account for 35% of traffic
Hyper Giants Morphing into CDNs
Hyper Giants’ CDN Examples

- More than 60% of traffic flows directly between Google and consumer networks
 - Good for Google and consumer networks
- Facebook applies the same approach
 - More than 25% of Facebook runs through direct peerings with last-mile providers
- Microsoft started building its own CDN

Google Global Cache Server
Hyper Giants CDNs’ Properties

- Hyper giants’ CDNs are different from traditional CDNs (e.g., Akamai’s):
 - Support bi-directional data transfers, i.e., both uploads and downloads
 - Needed for various Web 2.0 apps
 - Agile replication of content towards anticipated receivers

Research question:
- Can we build a generic data transfer architecture on top of clouds?
Legacy Data Transfer
Cloud-Based Data Transfer
Why Should This Work?

- Cut the e2e Internet path into several shorter-RTT path chunks
- Avoid Internet bottlenecks
- Benefit from agile cloud replication
Deployment Scenarios

- **The bad**
 - “Free-riding” not likely to be liked by clouds:
 - Private resources used by 3rd parties
 - The problem is a transparent data transfer service provided by clouds
 - Hard to detect because:
 - Large amounts of data
 - we were able to push 100 Gbytes with no problems
 - Opening multiple accounts is straightforward

- **The good**
 - Potential for selling data acceleration services to 3rd parties
 - such that the performance of host applications is not degraded
Cloud-Based Data Transfer Services

Multicast

Multi-cloud hopping

Multi-cloud homing
Remaining Outline

- Cloud selection and properties
- Per-cloud data transfer performance
- Decomposing cloud-based data transfers
- Multi-cloud homing
- Cloud-based multicast
- Cloud path consistency
- Cloud-hopping overlays
- Cloud-supported overlays
Investigated “Carrier Applications”

<table>
<thead>
<tr>
<th>Region</th>
<th>Gmail</th>
<th>Hotmail</th>
<th>YouTube</th>
<th>Flickr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>U</td>
<td>D</td>
<td>U</td>
</tr>
<tr>
<td>N. America</td>
<td>17</td>
<td>17</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Europe</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Asia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. America</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oceania</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>23</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Region								
	D	U	D	U	D	U	D	U
N. America	171917	1917	1512	121				
Europe	62591	2591	80	01				
Asia	01186	1186	40	00				
S. America	0154	154	10	00				
Oceania	0285	285	00	00				
Unknown	099	99	012	12				
Total	6232	6232	281	12				
Per-Cloud Performance

Cloud-based paths can often, consistently and significantly outperform regular Internet paths.

Transcoding effects

- YouTube: 42.3%
- Flickr: 63.5%

CDF

Transfer time [second]
Cloud-based paths can *often, consistently* and *significantly* outperform regular Internet paths.

Fully transparent data transfer

![Graph showing CDF of transfer time for different services](image)

- Gmail: 41%
- Hotmail: 19.4%
- YouTube: xx%
- Flickr: xx%
- Direct Transfer: xx%
Transfer-Time Variance

Variance of transfer times is much smaller for cloud-based transfers then for Internet paths.

![Graph showing variance of transfer times between cloud and Internet for different services like Gmail, Hotmail, Youtube, Flickr, and Direct Transfer.](image-url)
The Role of RTTs

Longer-RTT paths are more likely to be improved via clouds, but other factors play the role as well.

"Cloud" curves are shifted to the right.
The Role of RTTs

Longer-RTT paths are more likely to be improved via clouds, but other factors play the role as well.

- Short-RTT paths can be improved via clouds.
- Long-RTT paths may not be improved by clouds.
Remaining Outline

- Cloud selection and properties
- Per-cloud data transfer performance
- Decomposing cloud-based data transfers
- Multi-cloud homing
- Cloud-based multicast
- Cloud path consistency
- Cloud-hopping overlays
- Cloud-supported overlays
Upload latency depends upon the scale and distribution of upload servers.
Skynet: A Cloud-Based Data Transfer Architecture

Replication Latency

Different replication policies

CDF

Replication Latency [second]

No replication

Replication

Gmail
Hotmail
Youtube
Flickr
Download Latency

Pushing data closer to end users pays off

![CDF Graph]

- Gmail: 14 sec
- Hotmail: 73 sec
- YouTube: rate limiting
Cloud-Based Multicast

For multicast group sizes > 25, cloud-based multicast outperforms direct multicast for all clouds.
Remaining Outline

- Cloud selection and properties
- Per-cloud data transfer performance
- Decomposing cloud-based data transfers
- Multi-cloud homing
- Cloud-based multicast
- Cloud path consistency
- Cloud-hopping overlays
- Cloud-supported overlays
Cloud-Supported Overlay

Cloud-based paths bring additional benefits in overlay scenarios

35% improvement for files that experience longest transfer times.
Remaining Outline

- Cloud selection and properties
- Per-cloud data transfer performance
- Decomposing cloud-based data transfers
- Multi-cloud homing
- Cloud-based multicast
- Cloud path consistency
- Cloud-hopping overlays
- Cloud-supported overlays
Conclusions

- The rise of hyper giants and their transparency enable cloud-based data transfers

- We demonstrated the feasibility of building data transfer services on top of clouds and their superior performance
 - Opens novel security challenges and may lead to an “arms race” in this area
 - Shows significant potentials for building explicit ties between legacy- and the new Internet
Other Projects

- Monitoring net neutrality (NSF and Google)
 - Design auditing tools to enable ISPs’ transparency
 - Measurement Lab
- Auditing Internet content (NSF)
 - How do we know that the information on the Web is not biased?
- Analyzing human mobility with applications in networked systems (Narus Inc.)
- Sound fusion project
Sound Fusion Project

- A huge amount of live concert recordings is available online
 - But the quality can be very poor
- Can we fuse these recordings to generate a high-quality signal?
- Complications:
 - No reference that defines which part is music and which noise
 - SNR unknown
 - No pilot signal
Thank You!

Questions?

http://networks.cs.northwestern.edu