Secure Biometric Computation and Outsourcing

Marina Blanton
Department of Computer Science and Engineering
University of Notre Dame

University of California, Irvine
September 2011
Everyone agrees that biometric data are sensitive in nature

Proper protection is required any time such data is used in untrusted environments

- data is distributed across different entities
- external computing resources are used
- only in-house resources are used, but additional protection against break-ins, malware, etc. is desirable

Computing on biometric data is non-trivial due to noisy nature of each reading

This talk treats the problem of secure biometric processing and outsourcing for the above scenarios
Secure Computing on Biometric Data

- Where do we need to securely process biometric data?
 - data is located at different agencies
 - data access by third parties can be prohibited by law or other provisions
 - can they compute if there are related biometrics that appear in both databases?
 - biometric computation can be so large in scale that using external computing resources is necessary
 - researchers test a new biometric algorithm
 - pairwise distance between each pair of biometrics in the database needs to be computed
Secure Biometric Computation

- Let’s use a specific setup of two-party iris identification
 - A has a database D of iris images
 - B has a biometric image and would like to know if the biometric appears in A’s database
 - B extracts features from the image and obtains an iris code X represented as a binary string
 - A and B compare X to each $Y \in D$ in such a way that
 - A doesn’t learn anything about X
 - B learns nothing about each Y other than the result of the comparison (a bit)
Iris Code Matching

- An iris is represented as an m-bit binary string X

- There is an additional m-bit string $M(X)$, called mask, for each X
 - mask indicates what bits in X are unreliable and shouldn’t be used to make a decision about proximity of two iris codes

- To compute a distance between iris codes X and Y, we compute what fraction of reliable bits are the same in X and Y
 - let X_i denote ith bit of X

\[
\text{dist}(X, Y) = \frac{||(X \oplus Y) \cap M(X) \cap M(Y)||}{||M(X) \cap M(Y)||} = \frac{\sum_{i=1}^{m} (X_i \oplus Y_i) M(X_i) M(Y_i)}{\sum_{i=1}^{m} M(X_i) M(Y_i)}
\]
Iris Code Matching

- Iris codes X and Y are considered to be a match if their distance is below a certain threshold T: $\text{dist}(X, Y) < T$

- The matching process also needs to address iris rotation due to head tilt
 - during matching one code needs to be rotated to find the optimal alignment
 - let $\text{LS}^i(Y)$ and $\text{RS}^j(Y)$ denote circular rotation of Y i positions left and j positions right, respectively
 - now the matching process becomes

$$\min(\text{dist}(X, \text{LS}^c(Y)), \ldots, \text{dist}(X, \text{LS}^1(Y)), \text{dist}(X, Y), \text{dist}(X, \text{RS}^1(Y)), \ldots, \text{dist}(X, \text{RS}^c(Y))) < T$$
Secure Iris Code Matching

• How do A and B perform the computation without revealing their data?
 – the parties can compute on encrypted data or on shares of the data
 – in additively homomorphic encryption:
 • $\text{Enc}(m_1) \cdot \text{Enc}(m_2) = \text{Enc}(m_1 + m_2)$ and
 $\text{Enc}(m)^a = \text{Enc}(a \cdot m)$

• Questions that we need to answer
 – all encrypted values must be integers, what does it mean for us?
 – division is difficult to perform
 • can we substitute it with something else?
 – how about computation of the minimum now?
 • intermediate distances are incomparable
Let $D(X, Y) = |(X \oplus Y) \cap M(X) \cap M(Y)|$ and $M(X, Y) = |M(X) \cap M(Y)|$

We now obtain

$$(D(X, LS^c(Y)) < T \cdot M(X, LS^c(Y))) \lor \ldots \lor$$

$$\lor (D(X, Y) < T \cdot M(X, Y)) \lor \ldots \lor$$

$$\lor (D(X, RS^c(Y)) < T \cdot M(X, RS^c(Y)))$$

The above can be implemented using arithmetic operations and comparisons

$$X_i \oplus Y_i = X_i + Y_i - 2X_iY_i = X_i(1 - Y_i) + (1 - X_i)Y_i$$
Secure Iris Code Matching

- **Initial secure iris matching protocol**
 - \(B \) creates a public-key encryption pair \((pk, sk)\) for homomorphic encryption and gives \(pk \) to \(A \)
 - \(B \) sends encrypted bits of \(X \) and \(M(X) \) to \(A \)
 - necessary computation will be possible only if the transmitted information is in the correct form
 - for each \(i = 1, \ldots, m \), \(B \) transmits
 \[
 \langle a_{i1}, a_{i2} \rangle = \langle \text{Enc}(X_i M(X_i)), \text{Enc}((1 - X_i) M(X_i)) \rangle
 \]
 - this will allow \(A \) to compute encrypted \((X_i \oplus Y_i) M(X_i) M(Y_i)\) and \(M(X_i) M(Y_i) \) and therefore \(D(X, Y) \) and \(M(X, Y) \)
 - \(A \) first sets \(a_{i3} = a_{i1} \cdot a_{i2} = \text{Enc}(M(X_i)) \) for \(i = 1, \ldots, m \)
Secure Iris Code Matching

- **Initial secure iris matching protocol**

 - *A* will perform the same operations for each $Y \in D$ and each rotation Y^j of Y for $j = -c, \ldots, c$

 - to get $D(X_i, Y_i^j) = (X_i(1 - Y_i^j) + (1 - X_i)Y_i^j)M(X_i)M(Y_i^j)$

 in encrypted form, *A* performs $b_i^j = a_{i1}(1-Y_i^j)M(Y_i^j) \cdot a_{i2}Y_i^j M(Y_i^j) = \text{Enc}(X_i M(X_i)(1 - Y_i^j) M(Y_i^j) + (1 - X_i)M(X_i)Y_i^j M(Y_i^j))$

 - *A* then multiplies all b_i^j to obtain $\text{Enc}(D(X, Y^j))$

 - to obtain $\text{Enc}(T(||M(X) \cap M(Y^j)||))$, *A* performs $d_i^j = a_{i3}^{M(Y_i^j)} = \text{Enc}(M(X_i)M(Y_i^j))$ and then computes

 $d^j = (\prod_{i=1}^m d_i^j)^T = \text{Enc}(T(\sum_{i=1}^m M(X_i)M(Y_i^j)))$

 - *A* now computed all $D(X, Y^j)$ and $T \cdot M(X, Y^j)$
Secure Iris Code Matching

- **Initial secure iris matching protocol**
 - what remains is secure computation of $2c + 1$ comparisons and then OR of the resulting bits
 - the most efficient way to achieve this is to use called garbled circuits
 - it is a Boolean circuit for comparison that is evaluated obliviously without revealing any information about the data
 - before comparisons can be done, A and B need to split the encrypted values into random shares and then decrypt
 - A adds a random value r to computed distances
 - B obtains $\text{Enc}(D(X, Y^j) + r)$ and decrypts without being able to learn $D(X, Y^j)$
• **Efficiency** of this solution can be improved in many ways

 – proper choice of encryption scheme can make a tremendous difference

 – many encrypted values can be computed in advance before the data are known

 • A can precompute encryptions of all random values

 • B can precompute (and even send) encryptions of bits

 – computation of $D(X_i, Y_i^j)$ and $M(X_i, Y_i^j)$ can be optimized based on A’s data

 • e.g., if $M(Y_i^j) = 0$, computation of both b_i^j and d_i^j can be skipped

 – additional one-time computation is possible that makes processing of each Y faster
• **Implementation of secure iris matching**

 – the solution was implemented using a recent encryption scheme of Damgard, Geisler, and Kroigard

 – the parameters were set to $m = 2048$ and $c = 5$

 – **the performance is notable for a fully secure solution**

 • two biometrics X and Y can be compared in less than 0.2 second

 • this involves on the order of $(2c + 1)m$ cryptographic operations

 • shorter biometric representations or simpler computations can be processed faster
Now suppose Alice has biometric images and would like to outsource the same computation to a cloud service.

Consider two options:

- computation is performed by a single server
- computation is outsourced to a number of servers and takes the form of secure multi-party computation

Techniques used for these options and their capabilities greatly differ.
Secure Iris Outsourcing

- **Securely outsourcing computation to a single server**
 - the main tool used for this purpose is **predicate encryption**
 - a ciphertext has a number of attributes I associated with it
 - a token corresponding to a predicate f is issued
 - a token can be used to decrypt a ciphertext iff its predicate evaluates to true on the ciphertext’s attribute, i.e., $f(I) = 1$
 - both ciphertext and predicate privacy are essential

- Alice stores encryptions of iris codes from her database at a server
- to perform identification of a new biometric, she issues a token for it
- the server applies the token to the ciphertexts, and all entries that decrypt correspond to related biometrics
Secure Iris Outsourcing

- There are limitations to what functions can be evaluated in this manner.

- In the most powerful type of predicate encryption:
 - Attributes I and predicates f correspond to vectors.
 - $f(I) = 1$ iff the inner product of f and I is 0.
 - This supports checking whether a polynomial evaluates to a specific value, OR and AND of polynomials, but not the overall computation.

- What can be computed now is:

$$\left(D(X, LS^c(Y)) < T \right) \lor \ldots \lor \left(D(X, Y) < T \right) \lor \ldots \lor \left(D(X, RS^c(Y)) < T \right)$$

- With a special robust representation of iris codes $M(X, Y)$ is always high and changing the function doesn’t introduce a large error.
Secure Iris Outsourcing

• Using predicate encryption for iris outsourcing

 – to evaluate polynomial \(p(x) = a_t x^t + \ldots + a_1 x + a_0 \) on point \(x_0 \),
 set \(I = \langle a_t, \ldots, a_1, a_0 \rangle \) and \(f = \langle x_0^t, \ldots, x_0, 1 \rangle \)

 – to test whether \(p(x_0) = d \), change the above to
 \(I = \langle a_t, \ldots, a_1, a_0, -d \rangle \) and \(f = \langle x_0^t, \ldots, x_0, 1, 1 \rangle \)

 – to compute \(f_1(I_1) \lor f_2(I_2) \), use polynomial \(p_3 = p_1 \cdot p_2 \)

 • \(p_3 \) evaluates to 0 when at least one of \(p_1 \) and \(p_2 \) evaluates to 0

 – we can now compute the Hamming distance

 \[
 H(X, Y) = \sum_{i=1}^{m} ((X_i \oplus Y_i) \land M(X_i) \land M(Y_i)) \\
 = \sum_{i=1}^{m} (X_i + Y_i - 2X_iY_i)M(X_i)M(Y_i) \\
 = \sum_{i=1}^{m} ((1 - 2X_i)Y_i + X_i)M(X_i)M(Y_i)
 \]

 using polynomial representation
Secure Iris Outsourcing

• Using predicate encryption for iris outsourcing

 – set \(I = \langle M(Y_1)Y_1, M(Y_1), \ldots, M(Y_m)Y_m, M(Y_m) \rangle \) and
 \(f = \langle M(X_1)(1 - 2X_1), M(X_1)X_1, \ldots, M(X_m)(1 - 2X_m), M(X_m)X_m \rangle \)

 – this corresponds to a polynomial \(p \) evaluated on points \(X_i, M(X_i) \)

 – to test whether the distance lies in the interval \([0, T - 1]\), construct
 new polynomial \(q = p(p - 1) \cdots (p - (T - 1)) \)

 – finally, form polynomials \(q_{-c}, \ldots, q_c \), where \(q_i \) uses \(Y \) shifted \(i \) times
 to the right, and compute their OR by taking their product

• The server will apply the token for \(f \) to all ciphertexts in the database
 and return the indices of records that matched
• When computation is outsourced to several servers, precise and significantly more efficient computation can be achieved

 – use secure computation techniques based on linear secret sharing

 – each Hamming distance – i.e., \(D(X, Y) \) and \(M(X, Y) \) – is computed locally

 – communication is no longer linear in \(m \)

 • interactive work for comparing two biometrics is linear in the length of the distance representation \(\log m \)

 – security against active adversaries can be achieved
Another important topic for computation outsourcing is ensuring that the returned result is correct. We consider “lazy” adversaries that might attempt to skip the computation, but don’t try to intentionally corrupt it. Cheating should be detected with desired probability when the server skips a noticeable portion of computation. For example, if the server performs 95% of computation or less, probability of detection should be at least 99%.
Adding Robustness to Biometric Computation

- **Outsourcing of biometric identification is not suited for efficient computation verification**
 - we don’t want the client to do work proportional to the database size
 - verification of the correctness of returned indices is not possible with sub-linear work

- **Other types of computing on biometric data can be verified at work sublinear in the size of computation**
 - testing a new biometric algorithm involves computing distances between a large number of biometrics
 - performing “all-pairs” computation or producing statistics about the distribution involves $O(n^2)$ work for a database of size n
 - computation is inevitably placed on a cloud or grid
Adding Robustness to Biometric Computation

- **Cheating detection in All-Pairs and statistics computation**
 - to detect cheating, we use simple ideas
 - add a number of fake biometrics at random locations
 - add fake elements at random locations to each biometric
 - ensure that checked values are unpredictable
 - the analysis is complex and determines the values of security parameters
 - need to ensure that probability of guessing the values that haven’t been computing and are being checked is sufficiently low
Conclusions

- Secure processing of biometric data moves closer to practicality

- Many interesting research directions remain
 - a number of biometric types are still unexplored
 - efficient robustness techniques deserve more attention